Complementary combination in i-vector level for language recognition

نویسندگان

  • Zhiyi Li
  • Wei-Qiang Zhang
  • Liang He
  • Jia Liu
چکیده

Recently, i-vector based technology can provide good performance in language recognition (LRE). From the viewpoint of information theory, i-vectors derived from different acoustic features can contain more useful and complementary language information. In this paper, we propose an effective complementary combination for two kinds of i-vectors. One is derived from the commonly used short-term spectral shifted delta cepstral (SDC) and the other from a novel spectro-temporal time-frequency cepstrum (TFC). In order to overcome the curse of dimension and to remove the redundant information in the combined i-vectors, we use principal component analysis (PCA) and linear discriminant analysis (LDA) and evaluate their performances, respectively. For classification, cosine distance scoring (CDS) and support vector machine (SVM) are applied to the new combined i-vectors. The experiments are performed on the NIST LRE 2009 dataset, and the results show that the proposed method can effectively improve the better performance than baseline by EER reducing 1% for 30 s duration and 2.3% for both 10 s and 3 s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش های طیفی برای شناسایی زبان گفتاری

Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...

متن کامل

Applying mean shift and motion detection approaches to hand tracking in sign language

Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Written word recognition by the elementary and advanced level Persian-English bilinguals

According  to  a  basic  prediction  made  by  the  Revised  Hierarchical  Model  (RHM),  at  early  stages  of language  acquisition,  strong  L2-L1  lexical  links  are  formed.  RHM  predicts  that  these  links  weaken with  increasing  proficiency,  although  they  do  not  disappear  even  at  higher  levels  of  language development. To test this prediction, two groups of highly proficie...

متن کامل

Application of Convolutional Neural Networks to Language Identification in Noisy Conditions

This paper proposes two novel frontends for robust language identification (LID) using a convolutional neural network (CNN) trained for automatic speech recognition (ASR). In the CNN/i-vector frontend, the CNN is used to obtain the posterior probabilities for i-vector training and extraction instead of a universal background model (UBM). The CNN/posterior frontend is somewhat similar to a phone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012